The cancer testis antigen Preferentially Expressed Antigen of Melanoma (PRAME) is overexpressed in many solid tumours and haematological malignancies whilst showing minimal expression in normal tissues and is therefore a promising target for immunotherapy. HLA-A0201-restricted peptide epitopes from PRAME have previously been identified as potential immunogens to drive antigen-specific autologous CTL responses, capable of lysing PRAME expressing tumour cells. CTL lines, from 13 normal donors and 10 melanoma patients, all of whom were HLA-A0201 positive, were generated against the PRAME peptide epitope PRA(100-108). Specific killing activity against PRA(100-108) peptide-pulsed targets was weak compared with CTL lines directed against known immunodominant peptides. Moreover, limiting dilution cloning from selected PRAME-specific CTL lines resulted in the generation of a clone of only low to intermediate avidity. Addition of the demethylating agent 5-aza-2'-Deoxycytidine (DAC) increased PRAME expression in 7 out of 11 malignant cell lines including several B lineage leukaemia lines and also increased class I expression. Pre-treatment of target cells was associated with increased sensitivity to antigen-specific killing by the low avidity CTL. When CTL, as well as of the target cells, were treated, the antigen-specific killing was further augmented. Interestingly, one HLA-A0201-negative DAC-treated line (RAJI) showed increased sensitivity to killing by clones despite a failure of expression of PRAME or HLA-A0201. Together these data point to a general increased augmentation of cancer immunogenocity by DAC involving both antigen-specific and non-specific mechanisms.
Read full abstract