We investigate the influence of an external electric field on the dewetting behavior of nitrogen-water systems between two hydrophobic plates using molecular dynamics simulations. It is found that the critical distance of dewetting increases obviously with the electric field strength, indicating that the effective range of hydrophobic attraction is extended. The mechanism behind this interesting phenomenon is related to the rearrangement of hydrogen bond networks between water molecules induced by the external electric field. Changes in the hydrogen bond networks and in the dipole orientation of the water molecules result in the redistribution of the neutral nitrogen molecules, especially in the region close to the hydrophobic plates. Our findings may be helpful for understanding the effects of the electric field on the long-range hydrophobic interactions.
Read full abstract