The Philippines is situated in the geographic region regarded as the center of diversity of banana and its wild relatives (Musa spp.). It holds the most extensive collection of B-genome germplasm in the world along with A-genome groups and several natural hybrids with A- and B-genome combinations. Management of this germplasm resource has relied immensely on identification using local names and morphological characters, and the extent of genetic diversity of the collection has not been achieved with molecular markers. A high-throughput and reliable genotyping method for banana and its relatives will facilitate germplasm management and support breeding initiatives toward a marker-based approach. Here, we developed a 1K SNP genotyping panel based on filtering of high-quality genome-wide SNPs from the Musa Germplasm Information System and used it to assess the genetic diversity and population structure of 183 accessions from a Musa spp. germplasm collection containing Philippine and foreign accessions. Targeted GBS using SeqSNP™ technology generated 70,376,284 next-generation sequencing (NGS) reads with an average effective target SNP coverage of 340 × . Bioinformatics pipeline revealed 971 polymorphic SNPs containing 76.9% homozygous calls, 23.1% heterozygous calls and 4% with missing data. A final set of 952 SNPs detected 2,092 alleles. Pairwise genetic distance varied from 0.0021 to 0.3325 with most pairs of accessions distinguished with 250 to 300 loci. The SNP panel was able to detect seven (k = 7) genetically differentiated groups and its composition through Principal Component Analysis (PCA) with k-means clustering algorithm and Discriminant Analysis of Principal Components (DAPC). Accession-specific SNPs were also identified. The 1K SNP panel effectively distinguishes between genomic groups and provides relatively good resolution of genome-wide nucleotide diversity of Musa spp. This panel is recommended for low-density genotyping for application in marker-assisted breeding and germplasm management, and could be further enhanced to increase marker density for other applications like genetic association and genomic selection in bananas.
Read full abstract