The wear behavior of Aluminum Alloy (AA) 2024 reinforced with SiC particles were investigated at room conditions. Stir casting method was used to prepare the matrix composite of AA 2024 alloy reinforced with different weight percentages of SiC (3, 6, 9, 12 wt%). The wear behavior of both AA 2024 and AA 2024/SiC composite was studied using the reciprocating wear test. Loads of 2.5, 5, 7.5, 10, and 12.5 N were applied with sliding speeds of .0.55, 0.72, 0.88, 1.04 and 1.2 m/sec in dry sliding contact conditions. The microstructure and phase distribution were investigated using Optical Microscope (OM) and Scanning Electron Microscopy (SEM). The results demonstrate the presence of fine dendritic structure with semi-homogeneously distributed SiC particles in the alloy matrix. The micro-hardness increased with increasing SiC percentage. The highest value of hardness of 79.3 HV was found at 12 wt% SiC, from the initial 44 HV of the base alloy. The wear tests showed that the wear rate increased with increasing applied normal contact load at a contact sliding speed of 0.88 m/sec. The wear rate of the as cast material was 18.59 ×10-8 g/cm. Adding the SiC particles decreased the wear rate to 13.78, 9.76, 7.98, and 5.81 ×10-8 g/cm for 3, 6, 9, 12 wt% SiC addition at 12.5 N applied load, respectively. SEM examination of worn surfaces showed that severe and abrasive wear was exhibited at higher loads in the dry case while mild and adhesive wear were observed at lower loads in the lubricated condition.
Read full abstract