Nuclear homeostasis requires a balance of forces between the cytoskeleton and nucleus. Mutations in the LMNA gene, which encodes the nuclear envelope proteins lamin A/C, disrupt this balance by weakening the nuclear lamina. This results in nuclear damage in contractile tissues and ultimately muscle disease. Intriguingly, disrupting the LINC complex that connects the cytoskeleton to the nucleus has emerged as a promising strategy to ameliorate LMNA-associated cardiomyopathy. Yet how LINC complex disruption protects the cardiomyocyte nucleus remains unclear. To address this, we developed an assay to quantify the coupling of cardiomyocyte contraction to nuclear deformation and interrogated its dependence on the nuclear lamina and LINC complex. We found that, surprisingly, the LINC complex was mostly dispensable for transferring contractile strain to the nucleus, and that increased nuclear strain in lamin A/C-deficient cardiomyocytes was not rescued by LINC complex disruption. Instead, LINC complex disruption eliminated the cage of microtubules encircling the nucleus. Disrupting microtubules was sufficient to prevent nuclear damage and rescue cardiac function induced by lamin A/C deficiency. We computationally simulated the stress fields surrounding cardiomyocyte nuclei and show how microtubule forces generate local vulnerabilities that damage lamin A/C-deficient nuclei. Our work pinpoints localized, microtubule-dependent force transmission through the LINC complex as a pathological driver and therapeutic target for LMNA-cardiomyopathy.