Data are presently being produced at an increased speed in different formats, which complicates the design, processing, and evaluation of the data. The MapReduce algorithm is a distributed file system that is used for big data parallel processing. Current implementations of MapReduce assist in data locality along with robustness. In this study, a linear weighted regression and energy-aware greedy scheduling (LWR-EGS) method were combined to handle big data. The LWR-EGS method initially selects tasks for an assignment and then selects the best available machine to identify an optimal solution. With this objective, first, the problem was modeled as an integer linear weighted regression program to choose tasks for the assignment. Then, the best available machines were selected to find the optimal solution. In this manner, the optimization of resources is said to have taken place. Then, an energy efficiency-aware greedy scheduling algorithm was presented to select a position for each task to minimize the total energy consumption of the MapReduce job for big data applications in heterogeneous environments without a significant performance loss. To evaluate the performance, the LWR-EGS method was compared with two related approaches via MapReduce. The experimental results showed that the LWR-EGS method effectively reduced the total energy consumption without producing large scheduling overheads. Moreover, the method also reduced the execution time when compared to state-of-the-art methods. The LWR-EGS method reduced the energy consumption, average processing time, and scheduling overhead by 16%, 20%, and 22%, respectively, compared to existing methods.
Read full abstract