Purpose. Development of a calculation methodology for three-layer cylindrical shell stability, which will significantly improve the calculation practice for these structures regarding the determination of critical external pressure. Methodology. When determining the critical external pressure, the method of variational calculation using the Euler equation of the mixed variational problem was used. To determine three-layer cylindrical shell stability, the factors of significant influence on its strength and stability were taken into consideration, namely the reduced modulus of a three-layer wall elasticity. Bending stiffness Dh was substituted with flexural stiffness of three-layer shell with account for the shear deformation. Findings. The current situation of the three-layer cylindrical shell stability issue is investigated. Using the variational calculation methods via the Euler equation of the mixed variational problem an equation is composed of equality condition of inner and external force action of an orthotropic structure, which is under the state of neutral equilibrium with radial displacement. The previously obtained equation for radial displacements having been taken and applied to the system potential energy per unit of length equation, an equation for the critical pressure determination is determined. The analytical solution obtained was proposed for the structure of the crane travelling wheel with an elastic insert. Pcr 1267MPa was obtained. The allowable wheel pressure on rail for the crane travelling wheels is adopted to be within 250 MPa, i.e. the available stability margin is nc 1267/250 5.1. As we can see, the stability margin is more than sufficient. Originality. A new methodology for the three-layer cylindrical shell under external pressure calculation is developed. A quantitative assessment of the crane travelling wheel with flexible insert critical pressure is carried out. Practical value. A determination methodology for critical pressure of a three-layer cylindrical structure under external pressure is created.
Read full abstract