The aerobic photooxidations of reduced 2,6-dichlorophenolindophenol and of reaction-center bacteriochlorophyll ( P-870) have been investigated in membrane vesicles (chromatophores) isolated from a non-phototrophic Rhodospirillum rubrum strain. In aerobic suspensions of wild-type chromatophores, continuous light elicits an increase of the levels of 2,6-dichlorophenolindophenol and of oxidized P-870, which reach steady-state values shortly after the onset of illumination. In contrast, light induces in mutant suspensions a transient increase of the levels of 2,6-dichlorophenolindophenol and of oxidized P-870, which fall to low steady-state values within a few seconds. These observations suggest that the mutation has altered a redox constituent located on the low-potential side of the photochemical reaction center, between a pool of acceptors and oxygen. Since endogenous cyclic photophosphorylation is catalyzed by mutant chromatophores at normal rates, it appears that the constituent altered by the mutation does not belong to the cyclic electron-transfer chain responsible for photophosphorylation. However, the system which mediates the aerobic photooxidations and the cyclic system are not completely independent: endogenous photophosphorylation is inhibited by oxygen in wild-type chromatophores but not in mutant chromatophores; in addition, the inhibitor of cyclic electron flow, 2-heptyl-4-hydroxyquinoline- N-oxide, enhances the aerobic photooxidation of reduced 2,6-dichlorophenolindophenol by chromatophores from both strains. These results support a tentative branched model for light-driven electron transfer. In that model, the constituent altered in the mutant strain is located in a side electron-transfer chain which connects the cyclic acceptors to oxygen.
Read full abstract