The addition of a few percent of nitrogen to GaP or GaPAs allows obtaining GaPNAs solid solutions that are lattice-matched to the silicon substrate over a wide range of band gaps, which makes it possible to obtain optoelectronic silicon integrated circuits. However, materials with a small fraction of nitrogen are understudied due to the difficulty in epitaxial growth of quaternary solid solutions with three materials of group V. The purpose of the study was the investigation of the influence of the substrate temperature during the epitaxial growth of dilute nitride materials (GaPN solid solution and GaPNAs/GaP(N) superlattices) on their optical properties, as well as the influence of the growth temperature and superlattice design on the bandgap of the resulting material. It was shown that there is an optimal growth temperature for samples: at temperatures below the optimal, non-radiative recombination at defects predominates, and at a temperature higher than the optimal one, the solid solution of the GaPN layer material decomposes into components with a larger and smaller fraction of nitrogen. Studies were also carried out on the decay of photoluminescence intensity over time in the studied structures at room temperature, which allowed us to evaluate the influence of growth parameters and structure design on the lifetime of nonequilibrium charge carriers. The best lifetime for structures with superlattices was obtained for the GaPNAs/GaPN superlattice and amounted to ~0.2 ns. As a result, the optimal growth temperatures were determined for bulk GaPN layers and for GaPNAs/GaP(N) superlattices, which leads to an increase in the PL intensity and lifetime of the carrier
Read full abstract