For an oriented 2-dimensional manifold Σ of genus g with n boundary components, the space Cπ1(Σ)/[Cπ1(Σ),Cπ1(Σ)] carries the Goldman–Turaev Lie bialgebra structure defined in terms of intersections and self-intersections of curves. Its associated graded Lie bialgebra (under the natural filtration) is described by cyclic words in H1(Σ) and carries the structure of a necklace Schedler Lie bialgebra. The isomorphism between these two structures in genus zero has been established in [13] using Kontsevich integrals and in [2] using solutions of the Kashiwara–Vergne problem.In this note, we give an elementary proof of this isomorphism over C. It uses the Knizhnik–Zamolodchikov connection on C\\{z1,…zn}. We show that the isomorphism naturally depends on the complex structure on the surface. The proof of the isomorphism for Lie brackets is a version of the classical result by Hitchin [9]. Surprisingly, it turns out that a similar proof applies to cobrackets.Furthermore, we show that the formality isomorphism constructed in this note coincides with the one defined in [2] if one uses the solution of the Kashiwara–Vergne problem corresponding to the Knizhnik–Zamolodchikov associator.
Read full abstract