Evidence for the decays B0→D¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{D} $$\\end{document}0ϕ and B0→D¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{D} $$\\end{document}*0ϕ is reported with a significance of 3.6 σ and 4.3 σ, respectively. The analysis employs pp collision data at centre-of-mass energies s\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\sqrt{s} $$\\end{document} = 7, 8 and 13 TeV collected by the LHCb detector and corresponding to an integrated luminosity of 9 fb−1. The branching fractions are measured to beBB0→D¯0ϕ=7.7±2.1±0.7±0.7×10−7,BB0→D¯∗0ϕ=2.2±0.5±0.2±0.2×10−6.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\displaystyle \\begin{array}{l}\\mathcal{B}\\left({B}^0\ o {\\overline{D}}^0\\phi \\right)=\\left(7.7\\pm 2.1\\pm 0.7\\pm 0.7\\right)\ imes {10}^{-7},\\\\ {}\\mathcal{B}\\left({B}^0\ o {\\overline{D}}^{\\ast 0}\\phi \\right)=\\left(2.2\\pm 0.5\\pm 0.2\\pm 0.2\\right)\ imes {10}^{-6}.\\end{array}} $$\\end{document}In these results, the first uncertainty is statistical, the second systematic, and the third is related to the branching fraction of the B0→D¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{D} $$\\end{document}0K+K− decay, used for normalisation. By combining the branching fractions of the decays B0 → D¯∗0ϕ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\overline{D}}^{\\left(\\ast \\right)0}\\phi $$\\end{document} and B0 → D¯∗0ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\overline{D}}^{\\left(\\ast \\right)0}\\omega $$\\end{document}, the ω-ϕ mixing angle δ is constrained to be tan2δ = (3.6 ± 0.7 ± 0.4) × 10−3, where the first uncertainty is statistical and the second systematic. An updated measurement of the branching fractions of the Bs0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {B}_s^0 $$\\end{document} → D¯∗0ϕ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\overline{D}}^{\\left(\\ast \\right)0}\\phi $$\\end{document} decays, which can be used to determine the CKM angle γ, leads toBBs0→D¯0ϕ=2.30±0.10±0.11±0.20×10−5,BBs0→D¯∗0ϕ=3.17±0.16±0.17±0.27×10−5.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\displaystyle \\begin{array}{c}\\mathcal{B}\\left({B}_s^0\ o {\\overline{D}}^0\\phi \\right)=\\left(2.30\\pm 0.10\\pm 0.11\\pm 0.20\\right)\ imes {10}^{-5},\\\\ {}\\mathcal{B}\\left({B}_s^0\ o {\\overline{D}}^{\\ast 0}\\phi \\right)=\\left(3.17\\pm 0.16\\pm 0.17\\pm 0.27\\right)\ imes {10}^{-5}.\\end{array}} $$\\end{document}
Read full abstract