We have previously demonstrated that messenger RNA (mRNA) lipoplexes composed of N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide (DC-1-16), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and polyethylene glycol-cholesteryl ether (PEG-Chol) exhibited high protein expression in the lungs and spleen of mice after intravenous injection and induced high levels of antigen-specific IgG1 upon immunisation. In this study, we optimised PEG modification in mRNA lipoplexes to reduce mRNA accumulation in the lungs and evaluated the suppression of tumour growth in mice bearing mouse lymphoma E.G7-ovalbumin (OVA) tumours by immunising them with an intravenous injection of OVA mRNA lipoplexes. PEGylation of mRNA lipoplexes with 3 mol% PEG-Chol (LP-DC-1-16-3PCL) prevented agglutination of erythrocytes and reduced accumulation in the lungs. Intravenous injection of LP-DC-1-16-3PCL lipoplexes containing OVA mRNA into mice induced high levels of anti-OVA IgG1 (83,000 mU/mL) in serum, and exhibited a high cytotoxic activity (97%) against E.G7-OVA cells by the splenocytes of mice. Furthermore, immunisation with LP-DC-1-16-3PCL lipoplexes containing OVA mRNA suppressed E.G7-OVA tumour growth compared to control mRNA. Based on these results, LP-DC-1-16-3PCL lipoplexes may be an effective mRNA vaccine for inducing antibody- and cytotoxic cell-mediated immune responses to tumours through intravenous injection.
Read full abstract