Recently, multi-view clustering methods have garnered considerable attention and have been applied in various domains. However, in practical scenarios, some samples may lack specific views, giving rise to the challenge of incomplete multi-view clustering. While some methods focus on completing missing data, incorrect completion can negatively affect representation learning. Moreover, separating completion and representation learning prevents the attainment of an optimal representation. Other methods eschew completion but singularly concentrate on either feature information or graph information, thus failing to achieve comprehensive representations. To address these challenges, we propose a graph-guided, imputation-free method for incomplete multi-view clustering. Unlike completion-based methods, our approach aims to maximize the utilization of existing information by simultaneously considering feature and graph information. This is realized through the feature learning component and the graph learning component. Introducing a degradation network, the former reconstructs view-specific representations proximate to available samples from a unified representation, seamlessly integrating feature information into the unified representation. Leveraging the semi-supervised idea, the latter utilizes reliable graph information from available samples to guide the learning of the unified representation. These two components collaborate to acquire a comprehensive unified representation for multi-view clustering. Extensive experiments conducted on real datasets demonstrate the effectiveness and competitiveness of the proposed method when compared with other state-of-the-art methods. Our code will be released on https://github.com/yff-java/GIMVC/.
Read full abstract