Fish community objectives for Lake Superior call for restoration such that it resembles its historical species composition, to the extent possible, yet allow for supplementation of naturalized Pacific salmonids (Oncorhynchus spp.). To achieve these goals, managers strive to control the sea lamprey (Petromyzon marinus) to levels that cause insignificant (<5%) mortality to host species. While control efforts have been successful, sea lamprey size has increased during the control period. We analyzed long-term sea lamprey size trends and found a significant increase from 1961 to 2003 (F = 36.76, p < 0.001, R2 = 0.473). A local regression revealed two significant size increase periods. We used Bayesian model averaging to find the relationship between sea lamprey size and the stocking of salmonids (lean lake trout (Salvelinus namaycush) and Pacific salmon). Bayesian model averaging identified 91 models, and several regressors were common features in many of the models. Sea lamprey weight was related to stocked lake trout lagged 3, 9, 11, and 13 years, and stocked Pacific salmon lagged 4 years. If sea lampreys can achieve larger sizes attached to Pacific salmonid hosts, and thus inflict more damage, there may be a trade-off for managers in achieving the fish community objectives for Lake Superior.
Read full abstract