Metasurfaces have provided unprecedented degrees of freedom in manipulating electromagnetic waves upon interfaces. In this work, we first explore the condition of wide operating bandwidth in the view of reflective scheme, which indicates the necessity of anomalous dispersion. To this end, the leaky cavity modes (LCMs) in the meta-atom are analyzed and can make effective permittivity inversely proportional to frequency. Here we employ the longitudinal Fabry–Perot (F-P) resonances and transverse plasmonic resonances to improve the LCMs efficiency. It is shown that the order of F-P resonance can be customized by the plasmonic modes, that is, the F-P cavity propagation phase should match the phase delay of surface currents excited on the meta-atom. The nth order F-P resonance will multiply the permittivity by a factor of n, allowing larger phase accumulation with increasing frequencies and forming nonlinear phase distribution which can be applied in weak chromatic-aberration focusing design. As a proof-of-concept, we demonstrate a planar weak chromatic-aberration focusing reflector with a thickness of λ0/9 at 16.0–21.0 GHz. This work paves a robust way to advanced functional materials with anomalous dispersion and can be extended to higher frequencies such as terahertz, infrared, and optical frequencies.
Read full abstract