The Crilin calorimeter represents a novel approach in the development of electromagnetic calorimeters for future colliders, especially for a Muon Collider. This paper details the design and performance of the innovative semi-homogeneous Crilin calorimeter, highlighting its capabilities in mitigating beam-induced backgrounds (BIB) while maintaining excellent time resolution (less than 50 ps), longitudinal segmentation, and fine granularity. These performances are achieved throughout a series of stackable and interchangeable lead fluoride (PbF2) crystal matrices readout by surface-mount UV-extended Silicon Photo-multipliers. Simulated and experimental results demonstrate the Crilin design’s potential to work as an efficient and cost-effective alternative to traditional electromagnetic calorimeters. Crilin radiation tolerance is discussed, as measured in several irradiation campaigns, as well as timing performances during a beam test at CERN-H2 with 120 GeV electrons for the latest prototype, Proto-1. Additionally, a description of the results from a recent beam test conducted at the LNF Beam Test Facility with 450 MeV electrons is provided, aiming to measure light yield losses due to irradiation.
Read full abstract