Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution. In this research, we designed an innovative chloroformate material and investigated the release of the acid at various temperatures. This new chloroformate material reacts slowly with water at room temperature, and can completely react with water to form hydrochloric acid at high temperatures, without residual organic chlorine and other harmful substances; thus, it is suitable for use as an acid agent in oilfields. To isolate the acid-release core material from the outer water phase, we encapsulated the former with various materials, such as cross-linked polyacrylate or polystyrene, to obtain microcapsules. By slowly breaking and degrading the shell layer at a high temperature, the goal of no acid being released at low temperatures with slow acid generation at a high temperature was achieved. The microcapsules were prepared using radical polymerization and the phase separation method. Furthermore, scanning electron microscopy, differential scanning calorimetry, chemical titration analysis, and other methods were used to characterize the structure and the sustained acid release of microcapsules. The results of thermogravimetry and other experiments showed that the prepared microcapsules successfully coated the chloroformate material. In contrast to the bare material, the slow-release performance of the microcapsules was significantly improved, and the continuous acid generating time was able to reach more than 10 h. Under optimum conditions, microcapsules with a uniform particle size with a sustained-release acid core were prepared, and the encapsulation efficiency reached up to 60%. Compared with traditional acid-release systems, the new system prepared in this study has better acid-release performance at high temperatures, while the product is both clean and convenient to use. Multiple important parameters, such as microcapsule particle size, can also be controlled by varying the experimental conditions to meet the needs of different oil/gas extraction environments. In summary, we prepared a promising new and efficient slow-release acid generation system, which has unique practical significance for optimizing current oilfield acid-fracturing technology.
Read full abstract