The aim of the study was to evaluate the release of NH4-N and PO4-P from polymer-coated fertilisers in the soil environment, and to analyse their impact on pH and conductivity of the soil leachates. In this investigation mineral NPK(S) 6-20-30(7) fertiliser (as a starting material), commercial, controlled-release OsmocoteTM fertiliser (as a reference material) and four polymer-coated fertilisers have been used. Biodegradable polybutylene(succinate-co- dilinoleate), polyethylene(succinate-co-terepftalate) and chitosan have been used as coating materials. The experiments were conducted in the laboratory conditions, in PVC columns filled with air-dry soil. The nutrients release from the investigated materials was explained based on the diffusion mechanism and it was interpreted with the use of the Korsmeyer–Peppas kinetic model. Two mechanisms dominate in the release process of nutrients: the mechanism based on quasi-Fickian diffusion and non-Fickian (anomalous case) mechanism. The largest changes of pH and electrical conductivity (EC) of soil leachates occurred in the initial period of research for all tested fertilisers (pH: 9.5–20.3% – loamy sand (S1) 7.9–20.6% – sandy loam (S2); EC: 438–1667% – S1, 771–1509% – S2). The polymer coating significantly reduces the nutrient release from the fertiliser core. The size of these changes depends on the type and thickness of the polymer layer and the physicochemical properties of the soils.
Read full abstract