Due to the strong interlayer coupling between multiple degrees of freedom, oxide heterostructures usually produce distinct interfacial phases with unexpected functionalities. Here, we report on the realization of quasi-two-dimensional ferromagnetic state in ultrathin La0.7Sr0.3MnO3 (LSMO) layer down to two unit cells (u.c.), being sandwiched by the planar infinite-layer structured SrCuO2 layers (P-SCO). We find the LSMO/P-SCO interface coupling has greatly suppressed the magnetic dead layer of LSMO, resulting in an emergent interfacial ferromagnetic phase. Thus, robust ferromagnetic order can be maintained in the 2 u.c.-thick LSMO layer (∼7.7 Å), showing a Curie temperature of ∼260 K and remarkable perpendicular magnetic anisotropy. X-ray absorption spectra reveal notable charge transfer from Mn to Cu at the interface, and thus, resulted preferential d3z2−r2 orbital occupation for interfacial Mn ions plays an important role in the inducing of perpendicular magnetic anisotropy in quasi-two-dimensional LSMO layer. Our work demonstrates a unique approach for tuning the properties of oxides via an interface engineering of oxygen coordination in perovskite/infinite-layer heterostructures.
Read full abstract