The Cathaysia Block (CAB) and its surrounding areas experienced intensive magmatism and mineralization in the Yanshanian period (ca. 200–90 Ma), but their mechanism and deep geodynamics are still debated. In addition, the origin and structures of the Hainan mantle plume are still unclear. To resolve these issues and investigate the large-scale lithospheric thinning and extension in the eastern South China Block, we determine a detailed 3-D S-wave velocity (Vs) model down to 700 km depth by collecting 24,190 S-wave teleseismic data recorded at 164 permanent stations and 125 portable stations deployed in the CAB and surrounding areas. Our results show that high-Vs anomalies exist separately in the study volume. Two high-Vs anomalies appear in the shallow upper mantle and the mantle transition zone, which may reflect the present thin lithosphere and the stagnant Paleo-Pacific slab, respectively. Two other high-Vs anomalies exist in the upper mantle, which may reflect the detached lithosphere and subducting slabs. In contrast, low-Vs anomalies appear widely beneath the CAB, which reflect a tilting magmatic conduit beneath the Wuyishan metallogenic belt (WYMB) and magmatic chambers beneath the Nanling metallogenic belt (NLMB). In addition, our results show that the Hainan plume has a double-layered appearance. Combining our tomographic results with previous multidisciplinary findings, we consider that (1) the subduction and rollback of the Paleo-Pacific Plate may have played different roles in the Yanshanian mineralization of the WYMB and the NLMB; (2) the double-layered appearance of the Hainan plume may be formed due to the influence of plume self-evolution dynamics and pre-existing deep structures; and (3) lithospheric delamination triggered by gravity instability may have occurred beneath the Xuefengshan Mountain in the late Mesozoic.
Read full abstract