While the potential of Artificial Intelligence (AI)—particularly Natural Language Processing (NLP) models—for detecting symptoms of depression from text has been vastly researched, only a few studies examine such potential for the detection of social anxiety symptoms. We investigated the ability of the large language model (LLM) GPT-4 to correctly infer social anxiety symptom strength from transcripts obtained from semi-structured interviews. N = 51 adult participants were recruited from a convenience sample of the German population. Participants filled in a self-report questionnaire on social anxiety symptoms (SPIN) prior to being interviewed on a secure online teleconference platform. Transcripts from these interviews were then evaluated by GPT-4. GPT-4 predictions were highly correlated (r = 0.79) with scores obtained on the social anxiety self-report measure. Following the cut-off conventions for this population, an F1 accuracy score of 0.84 could be obtained. Future research should examine whether these findings hold true in larger and more diverse datasets.
Read full abstract