This study aimed to investigate the adsorption properties of CO2, CH4, and N2 on anthracite. A molecular structural model of anthracite (C208H162O12N4) was established. Simulations were performed for the adsorption properties of single-component and multi-component gases at various temperatures, pressures, and gas ratios. The grand canonical ensemble Monte Carlo approach based on molecular mechanics and dynamics theories was used to perform the simulations. The results showed that the isotherms for the adsorption of single-component CO2, CH4, and N2 followed the Langmuir formula, and the CO2 adsorption isotherm growth gradient was negatively correlated with pressure but positively correlated with temperature. When the CO2 injection in the gas mixture was increased from 1 to 3% for the multi-component gas adsorption, the proportion of CO2 adsorption rose from 1/3 to 2/3, indicating that CO2 has a competing-adsorption advantage. The CO2 adsorption decreased faster with increasing temperature, indicating that the sensitivity of CO2 to temperature is stronger than that of CH4 and N2. The adsorbent potential energies of CO2, CH4, and N2 diminished with rising temperature in the following order: CO2 < CH4 < N2.
Read full abstract