Ore processing techniques used in Yellowknife's largest mining operation, Giant Mine, is responsible for the atmospheric release of approximately 20,000 t of particulate arsenic trioxide and other heavy metal(loids). This rapid deposition of heavy metal(loids) may have caused ecological disturbances to aquatic food webs. Here we use 210Pb and 137Cs dated lake sediment cores from 20 lakes within a 40 km radius of Yellowknife to examine the spatial-temporal distribution of arsenic, antimony and lead. Further, we model the toxicity of the sediment to aquatic biota pre-, during, and post-mining using palaeotoxicity modelling, enrichment factor assessment, and comparisons to national sediment quality guidelines. We found that metal(loid) profiles in sediment peaked during the height of mining operations. These peak metal(loid) concentrations were highest in lakes near the mine's roaster stack, and decreased with distance from the historic mine. Palaeotoxicity modelling of lake sediment archives indicate that there is no significant difference in the mean predicted toxicity of pre- and post-mining samples (p = 0.14), however mining activities in the region significantly increased the predicted toxicity of sediments to aquatic organisms during mining operations (p < 0.001). In the years since roasting processes ceased, the mean palaeotoxicity of all lakes has decreased significantly (p < 0.05), indicating a projected pattern of biological recovery. Importantly, some lakes remain at an elevated risk, indicating that aquatic ecosystems in Yellowknife may continue to have lingering effects on aquatic biota despite the closure of the mine two decades ago.
Read full abstract