Six different lines of evidence support the hypothesis that glacial Lake Agassiz expanded an additional 70,000 km2 over that previously mapped in northwestern Saskatchewan and that the lake discharged out the northwestern (Clearwater) outlet, then through glacial Lake McConnell and Mackenzie River to the Arctic Ocean. Elevations of formerly unmapped (1) strandlines and (2) glaciolacustrine sediments between the previously mapped northwest limit of Lake Agassiz and the Clearwater-lower Athabasca spillway indicate that water extended 170 km farther northwest. Recently, mapped strandlines at elevations up to 60 m above the previously mapped extent of Lake Agassiz can be traced along (3) isobases to the mouth of the spillway. Based upon (4) six radiocarbon dates recovered from spillway flood deposits in the Athabasca River valley and its late Pleistocene delta, the (5) Clearwater spillway was cut at 9.9 ka BP. This date is synchronous with the initiation of the Emerson Phase (9.9 ka BP) in the southern Lake Agassiz basin and (6) coincides with the position of the Laurentide Ice Sheet at the Cree Lake Moraine (10 ka BP) along the northern margin of the lake.Following closure of the eastern outlets at the onset of the Emerson Phase, Lake Agassiz transgressed toward the northwest into the deglaciated and isostatically depressed glacial foreland in the Churchill River valley to an elevation of 490 m, the pre-flood elevation of the Churchill-Mackenzie drainage divide at the head of the Clearwater-lower Athabasca spillway. The Beaver River Moraine (an earthen drainage divide) was breached, resulting in lowering Lake Agassiz 52 m to a stable elevation at 438 m. The lake discharged 21,000 km3 of water into the Arctic Ocean that raised global sea level by 6 cm.
Read full abstract