The transport and distribution of organisms such as larvae, seeds, or litter in the ocean as well as particles in industrial flows is often approximated by a transport of tracer particles. We present a theoretical investigation to check the accuracy of this approximation by studying the transport of inertial particles between different islands embedded in an open hydrodynamic flow aiming at the construction of a Lagrangian flow network reflecting the connectivity between the islands. To this end, we formulate a two-dimensional kinematic flow field which allows the placement of an arbitrary number of islands at arbitrary locations in a flow of prescribed direction. To account for the mixing in the flow, we include a von Kármán vortex street in the wake of each island. We demonstrate that the transport probabilities of inertial particles making up the links of the Lagrangian flow network essentially depend on the properties of the particles, i.e., their Stokes number, the properties of the flow, and the geometry of the setup of the islands. We find a strong segregation between aerosols and bubbles. Upon comparing the mobility of inertial particles to that of tracers or neutrally buoyant particles, it becomes apparent that the tracer approximation may not always accurately predict the probability of movement. This can lead to inconsistent forecasts regarding the fate of marine organisms, seeds, litter, or particles in industrial flows.
Read full abstract