Self-propelled manual wheelchairs offer several advantages over electric wheelchairs, including promoting physical activity and requiring less maintenance due to their simple design. While theoretical analyses provide valuable insights, laboratory testing remains the most reliable method for evaluating and improving the efficiency of manual wheelchair drives. This article reviews and analyzes the laboratory methods for assessing the efficiency of wheelchair propulsion documented in the scientific literature: (1) A wheelchair dynamometer that replicates real-world driving scenarios, quantifies the wheelchair’s motion characteristics, and evaluates the physical exertion required for propulsion. (2) Simultaneous measurements of body position, motion, and upper limb EMG data to analyze biomechanics. (3) A method for determining the wheelchair’s trajectory based on data from the dynamometer. (4) Measurements of the dynamic center of mass (COM) of the human–wheelchair system to assess stability and efficiency; and (5) data analysis techniques for parameterizing large datasets and determining the COM. The key takeaways include the following: (1) manual wheelchairs offer benefits over electric ones but require customization to suit individual user biomechanics; (2) the necessity of laboratory-based ergometer testing for optimizing propulsion efficiency and safety; (3) the feasibility of replicating real-world driving scenarios in laboratory settings; and (4) the importance of efficient data analysis techniques for interpreting biomechanical studies.
Read full abstract