AbstractThe aggregate formation and stability are controlled by the dynamics of soil organic matters (SOM), but how it is related to SOM chemical composition within different‐sized aggregates is largely unknown during manure fertilization. In this study, the variations of intra‐aggregate organic carbon (OC), including intra‐particulate organic matter (iPOM) and mineral‐associated organic matter, were quantitatively and qualitatively analysed, and then, their effects on aggregate formation and stability were assessed under four treatments: control (CK), mineral fertilizer (NPK), reduced manure (30%M) and manure fertilizers (M). Manure application (M) significantly increased macroaggregate proportion, mean weight diameter (MWD), and OC contents within different‐sized aggregates compared to CK, NPK, and 30%M. The OC accumulation of macroaggregate in M was attributed to OC content increase in silt plus clay subfraction rather than iPOM with more labile organic groups; oppositely, in microaggregate it was located in the relatively stable fine iPOM. The macroaggregate formation and stability were controlled by the fine iPOM within macroaggregates, whose abundant polysaccharide‐C and aliphatic‐C after manure fertilization advanced the microbial growth except for Gram‐positive bacteria, which further promoted macroaggregate formation and stability. The free silt plus clay fraction also affected macroaggregate formation and stability, and its polysaccharide‐C derived from microorganisms or decomposing SOM was positively associated with MWD and macroaggregate proportion. Because polysaccharide‐C can be easily associated with mineral particles, further improving micro‐ or macroaggregation. We conclude that continuous manure fertilization could increase labile SOM accumulation within aggregates and then facilitate microbial growth, which collectively are responsible for aggregate formation and stabilization.
Read full abstract