Carbazoles are key scaffolds of either antimicrobial/antiviral alkaloid natural products or therapeutics. As such, access to structurally diverse indole-containing carbazoles has attracted considerable attention. In this report, a pilot study is described using biotransformation to provide carbazoles that contain various acyl substituents. The biotransformation system contains the thiamine-diphosphate (ThDP)-dependent enzyme NzsH, the FabH-like 3-ketoacyl-ACP synthase NzsJ, and the aromatase/cyclase NzsI, encoded in the biosynthetic gene cluster (nzs) of the bacterial carbazole alkaloid natural product named neocarazostatin A. The utilization of a range of acyl-SNACs (synthetic acyl-thioester analogues of the native substrate) together with indole-3-pyruvate and pyruvate in the designed biotransformation system allows production of carbazole derivatives. Our results demonstrate that this three-enzyme system displays a considerable substrate profile toward acyl donors for production of carbazoles with different acyl substituents. Finally, two more enzymes were included in the biotransformation system: the tryptophan synthase stand-alone β-subunit variant, PfTrpB, generated from directed evolution in the literature, and a commercially available L-amino acid oxidase (LAAO). The addition of these two enzymes allows the transformation to start with indole building blocks to provide carbazoles with modifications in the indole ring system.
Read full abstract