Progressive environmental and climatic changes have significantly increased hydrometeorological threats all over the globe. Floods have gained global significance owing to their devastating impact and their capacity to cause economic and human loss. Accurate flood forecasting and the identification of high-risk areas are essential for preventing flood impacts and implementing strategic measures to mitigate flood-related damages. In this study, an assessment of the susceptibility to riverine flooding in India was conducted utilizing Multicriteria Decision making (MCDM) and an extensive geospatial database was created through the integration of fourteen geomorphological, meteorological, hydroclimatic, and anthropogenic factors. The coupled methodology incorporates a Fuzzy Analytical Hierarchy Process (FAHP) model, which utilizes Triangular Fuzzy Numbers (TFN) to determine the Importance Weights (IWs) of various parameters and their subclasses based on the Saaty scale. Based on the determined IWs, this study identifies proximity to rivers, drainage density, and mean annual rainfall as the key factors that contribute significantly to the occurrence of riverine floods. Furthermore, as the Geographic Information System (GIS) was employed to create the Riverine Flood Susceptibility (RFS) map of India by overlaying the weighted factors, it was found that high, moderate, and low susceptibility zones across the country span of 15.33%, 26.30%, and 31.35% of the total area of the country, respectively. The regions with the highest susceptibility to flooding are primarily concentrated in the Brahmaputra, Ganga, and Indus River basins, which happen to encompass a significant portion of the country’s agricultural land (334,492 km2) potentially posing a risk to India’s food security. Approximately 28.13% of built-up area in India falls in the highly susceptible zones, including cities such as Bardhaman, Silchar, Kharagpur, Howrah, Kolkata, Patna, Munger, Bareilly, Allahabad, Varanasi, Lucknow, and Muzaffarpur, which are particularly susceptible to flooding. RFS is moderate in the Kutch-Saurashtra-Luni, Western Ghats, and Krishna basins. On the other hand, areas on the outskirts of the Ganga, Indus, and Brahmaputra basins, as well as the middle and outer portions of the peninsular basins, show a relatively low likelihood of riverine flooding. The RFS map created in this research, with an 80.2% validation accuracy assessed through AUROC analysis, will function as a valuable resource for Indian policymakers, urban planners, and emergency management agencies. It will aid them in prioritizing and executing efficient strategies to reduce flood risks effectively.
Read full abstract