Modern light microscopy has benefited from the use of serial section microscopy such as in the Allen Brain Atlas and the creation of new rodent models for Alzheimer’s disease research [1, 2]. Typically, slides are prepared in the conventional manner, where images are collected using traditional light microscopy and digitally scanned. The resulting images then must be computationally registered to one another to create a 3D image. However, numerous issues have inhibited widespread adoption of this method. These include the manual nature of slide preparation and staining, the introduction of artifacts from manual sectioning and mounting on slides, the time taken for whole-slide scanning an entire sample, the difficult nature of image registration and data handling, and the simple fact that it results in too much data for modern infrastructures to handle. The knife-edge scanning microscope (KESM) combines sectioning and imaging into a single step, automates a large part of the traditional pathology workflow, and allows for a greater speed, precision, throughput, and scale at which tissues are digitized (Figure 1). The KESM achieves tissue data collection at a resolution of submicron pixels with a maximum sample volume of over 100 cm3, exceeding the depth offered by confocal or 2-photon microscopy. To handle high-resolution data of over a terabyte per cm3, sophisticated data processing software is applied to model 3D tissue reconstructions, provide interactive image views, and apply quantitative analytics. This allows quantitative analysis to be performed on 3D image stacks of whole mouse organs, which is extremely difficult, expensive, and time-consuming with traditional manual techniques.
Read full abstract