We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We use MaxCut problems as a reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms. For each algorithm, we analyze its performance in solving two types of MaxCut problems: weighted graph instances with randomly generated edge weights attaining 21 equidistant values from −1 to 1; and randomly generated Sherrington–Kirkpatrick (SK) spin glass instances. We empirically find a significant performance advantage for the studied MFB-CIM in comparison to the other two algorithms. We empirically observe a sub-exponential scaling for the median TTS for the MFB-CIM, in comparison to the almost exponential scaling for DAQC and the proven Õ2n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\widetilde{{{{\\mathcal{O}}}}}\\left(\\sqrt{{2}^{n}}\\right)$$\\end{document} scaling for DH-QMF. We conclude that the MFB-CIM outperforms DAQC and DH-QMF in solving MaxCut problems.
Read full abstract