Monte Carlo calculations have been carried out to determine the prompt gamma ray yield from a Portland cement sample using keV neutrons from a 3H(p,n) reaction with a Maxwellian energy distribution with kT=52 keV. This work is a part of wider Monte Carlo studies being conducted at the King Fahd University of Petroleum and Minerals (KFUPM) in search of a more efficient neutron source for its D(d,n) reaction based (2.8 MeV neutrons) Prompt Gamma Ray Neutron Activation Analysis (PGNAA) facility. In this study a 3H(p,n) reaction based prompt gamma ray PGNAA setup was simulated. For comparison purposes, the diameter of a cylindrical external moderator of the 3H(p,n) reaction based PGNAA setup was assumed to be similar to the one used in the KFUPM PGNAA setup. The results of this study revealed that the optimum geometry of the 3H(p,n) reaction based setup is different from that of the KFUPM PGNAA facility. The performance of the 3H(p,n) reaction based setup is also better than that of the 2.8 MeV neutrons based KFUPM facility and its prompt gamma ray yield is about 60–70% higher than that from the 2.8 MeV neutrons based facility. This study has provided a theoretical base for experimental test of a 3H(p,n) reaction based setup.
Read full abstract