This article describes the synthesis, spectroscopic studies, and theoretical calculations of nine original fluorophores based on the 2-(2'-hydroxyphenyl)benzazole (HBX) scaffold, functionalized at the 4-position of the phenol ring by ethynyl-extended aniline moieties. HBX dyes are well-known to display an excited-state intramolecular proton transfer (ESIPT) process, owing to a strong six-membered hydrogen bond in their structure that allows for an enol/keto tautomerism after photoexcitation. Appropriate electronic substitution can perturb the ESIPT process, leading to dual fluorescence, both excited tautomers emitting at specific wavelengths. In the examples described herein, it is demonstrated that the proton transfer can be finely frustrated by a modification of the constitutive heteroring, leading to a single emission band from the excited enol or keto tautomer or a dual emission with relative intensities highly dependent on the environment. Moreover, the nature of the functionalization of the N-alkylated aniline moiety also has a significant importance on the relative excited-state stabilities of the two tautomers in solution. To shed more light on these features, quantum chemical calculations by the density functional theory are used to determine the excited-state energies and rationalize the experimental spectroscopic data.
Read full abstract