A real-time joint trajectory generator for planar walking bipeds is proposed. This trajectory planner generates dynamically stable motion patterns by using a set of objective locomotion parameters as its input, and by tuning and exploiting the natural upper body dynamics. The latter can be determined and manipulated by using the angular momentum equation. Basically, trajectories for hip and swing foot motion are generated, which guarantee that the objective locomotion parameters attain certain prescribed values. Additionally, the hip trajectories are slightly modified such that the upper body motion is steered naturally, meaning that it requires practically no actuation. This has the advantage that the upper body actuation hardly influences the position of the Zero Moment Point. The effectiveness of the developed strategy is demonstrated by simulation results.
Read full abstract