We consider the Iwahori-Hecke algebra associated to an almost split Kac-Moody group $G$ (affine or not) over a nonarchimedean local field $K$. It has a canonical double-coset basis $(T_{\mathbf w})_{\mathbf w\in W^+}$ indexed by a sub-semigroup $W^+$ of the affine Weyl group $W$. The multiplication is given by structure constants $a^ {\mathbf u}_{\mathbf w,\mathbf v}\in N=Z_{\geq0}$ : $T_{\mathbf w}*T_{\mathbf v}=\sum_{\mathbf u\in P_{\mathbf w,\mathbf v}} a^ {\mathbf u}_{\mathbf w,\mathbf v} T_{\mathbf u}$. A conjecture, by Bravermann, Kazhdan, Patnaik, Gaussent and the authors, tells that $a^ {\mathbf u}_{\mathbf w,\mathbf v}$ is a polynomial, with coefficients in $N$, in the parameters $q_{i}-1,q'_{i}-1$ of $G$ over $K$. We prove this conjecture when $\mathbf w$ and $\mathbf v$ are spherical or, more generally, when they are said generic: this includes all cases of $\mathbf w,\mathbf v\in W^+$ if $G$ is of affine or strictly hyperbolic type. In the split affine case (where $q_{i}=q'_{i}=q$, $\forall i$) we get a universal Iwahori-Hecke algebra with the same basis $(T_{\mathbf w})_{\mathbf w\in W^+}$ over a polynomial ring $Z[Q]$; it specializes to our Iwahori-Hecke algebra when one sets $Q=q$.
Read full abstract