We propose an eight-channel Dense Wavelength Division Demultiplexer (DWDM) device based on one-dimensional photonic crystal (1-D PC) structures defected with lithium niobate (LiNbO3) thin films. The demultiplexer operates in the C-band window (1460–1560 nm), which belongs to the ITU grid for DWDM applications. The desired output wavelength is achieved by applying the proper external electric field to the LiNbO3 layer at various temperatures. The transfer matrix method (TMM) is used to simulate the transmittance spectrum. Efficient output channels with transmittances of about 90% are attained. An excellent quality factor of 30919 and a very small line width of 0.05 nm are exceptional values acquired by the output channels. A very small channel spacing of 0.182 nm is attained without compromising the crosstalk, which reaches a minimum value of −34 dB. The astounding characteristics of the eight channels reveal that the proposed demultiplexer could be a potentially efficient device for DWDM networks.
Read full abstract