Diarrhea presents a substantial risk of high morbidity and mortality among foals. Although studies have shown connections between gut microbiota and several gastrointestinal diseases, there is still inadequate information on gut microbial alterations in foals during diarrhea. In this study, we conducted 16S rRNA and ITS gene amplicon sequencing to investigate gut bacterial and fungal differences between healthy and diarrheic foals. The results unveiled significant reductions in gut bacterial and fungal diversities among foals experiencing diarrhea, accompanied by notable shifts in the composition of gut microbial communities. A considerable decrease was observed in the relative abundance of 30 bacterial and 34 fungal genera. Moreover, two bacterial and eight fungal genera were utterly undetectable in the gut microbiota of diarrheic foals. Some decreased genera, such as Bifidobacterium and Saccharomyces, were deemed beneficial and recognized as probiotics. The study revealed significant alterations in foals' gut bacterial and fungal communities during diarrhea, which enriched our comprehension of gut microbial dynamics in foals across varying health statuses. These findings offer valuable insights for managing diarrhea through gut microbiota modulation, suggesting that probiotics may be superior to antibiotics in preventing and controlling foal diarrhea.IMPORTANCEThis research advances the understanding of gut bacterial and fungal dynamics in foals, highlighting gut microbiota dysbiosis as a potential contributor to foal diarrhea. Additionally, we observed that many altered bacteria and fungi were downregulated during diarrhea, including some probiotic strains. Consequently, our findings provide evidence that probiotics may offer superior efficacy compared with antibiotics as potential candidates for preventing and treating foal diarrhea.
Read full abstract