BackgroundDried Blood Spot (DBS) analysis has been used for identification and quantification of diseases and disorders in large populations. Simply collecting blood or plasma samples on cotton paper, followed with an organic solvent extraction, many small molecules can be detected and quantified. In a typical procedure of DBS analysis in newborn screening, stable isotope internal standards (SIIS) are added to extraction solvent as a reference. However, this way of employing SIIS does not reflect extraction efficiency, or protein binding issues, nor does it reflect potential degradation that could occur. In addition, punched-out discs from larger DBS are known to have imprecision typically ≥ 15%. MethodsWe developed and tested an approach, internal quantitative DBS (iqDBS), which delivers an exact volume of whole blood or plasma to a paper disc that is impregnated with a dried concentration of SIIS for quantitation. Amino acids were derivatized to make butyl esters and measured using Flow Injection Analysis with Selected Reaction Monitoring (FIA-SRM). ResultsWe demonstrated with phenylalanine and tyrosine improved sensitivity and accuracy by applying iqDBS. ConclusionsWe established a new method for quantitative analysis of small molecules from dried blood spots that incorporates stable isotope internal standard at the time of blood collection.
Read full abstract