Atomic layer etching (ALE) is a promising technique that can solve the challenges associated with continuous or pulsed plasma processes—trade-offs between selectivity, profile, and aspect ratio dependent etching. Compared to silicon, oxide, and other materials, atomic layer etching of silicon nitride has not been extensively reported. In this paper, the authors demonstrate the self-limited etching of silicon nitride in a commercial plasma etch chamber. The process discussed in this paper consists of two sequential steps—surface modification in hydrogen plasma followed by the removal of modified layers in fluorinated plasma. In addition to the ALE characteristics, the authors also demonstrate that the process is anisotropic and the selectivity to oxide is >100. Although the saturated etch rate of one monolayer per cycle could not be attained, self-limited etching of silicon nitride still enables us to incorporate the benefits of atomic layer etching such as an absence of isodense bias and an extremely high selectivity to oxide into practical etch applications.
Read full abstract