Approximately 30% of individuals with advanced EC have unsatisfactory prognosis. Evidence suggests that TPX2 is frequently upregulated in malignancies and related to cancer progression. Its role and pathological mechanism in EC need further research. GSEA and TPX2 expression, GO, KEGG, and prognostic analyses were performed with TCGA data by bioinformatic approaches. Relationships between TPX2 expression and clinicopathological parameters were investigated immunohistochemically and statistically. shRNA and overexpression plasmids were constructed and transfected into AN3CA and Ishikawa cells to evaluate phenotypic changes and injected into nude mouse axillae. Coimmunoprecipitation and chromatin immunoprecipitation were used to identify interacting proteins and promoter-binding sequences. Changes in TPX2 expression were identified by Western blotting and RT-qPCR. TPX2 expression was significantly higher in EC tissues than in normal tissues in TCGA and in-house specimens (all p < 0.001). In survival analysis, high TPX2 expression was associated with poor prognosis (p = 0.003). TPX2 overexpression stimulated cancer cell proliferation, promoted the G0-G1-to-G2/M transition, enhanced invasion and migration, and accelerated tumor growth in nude mice. TPX2 regulated the CX3CR1/CXCL10 chemokine pathway and activated the PI3K/Akt signaling pathway. Sp1 negatively regulated TPX2 expression, affecting the malignant progression of endometrial cancer cells by coupling the CX3CR1/CXCL10 chemokine pathway to the PI3K/Akt signaling pathway. TPX2 could be a prognostic biomarker for EC and play an important role in the CX3CR1/CXCL10 chemokine pathway and PI3K/Akt pathway via Sp1.
Read full abstract