Abstract One hallmark of cancer is the accelerated metabolism, high energy requirements, and increased glucose uptake by the tumor cells, the latter being the first and rate-limiting step for glucose metabolism. Glucose transport into the tumor cell is mediated by facilitative high-affinity glucose transporter (GLUT) proteins. Among the 14 GLUT proteins, expression of GLUT1 in normal organs is nearly exclusively restricted to the blood brain barrier, while other GLUTs are also expressed in a wide variety of vital organs such as liver and heart. Interestingly, GLUT1 expression is highly regulated by hypoxia-inducible factor (HIF)-1α, a key driver of tumor progression. In line with this finding, GLUT1 over-expression was found to be associated with tumor progression and poor overall survival in various tumor indications. Consequently, GLUT1 represents a potential target for cancer treatment. Therefore, we have developed a highly-selective GLUT1 inhibitor, namely BAY-876, with selectivity over GLUT2, 3, and 4 of 4700-, 800-, and 135-fold, respectively. We here show for the first time the pharmacological characterization of BAY-876, comprising inhibition of glucose-uptake, anti-proliferative activity in vitro, and anti-tumor efficacy in vivo in models of different tumor indications in monotherapy as well as first results on the combinability of BAY-876. Furthermore, at the therapeutic dose, BAY-876 treatment did not show any relevant finding on the behavior of treated mice in the Irwin test, assuming no or only minor effects on brain function. In conclusion, BAY-876 is the first GLUT1-selective inhibitor which reduces glucose uptake and growth of tumor cells with sufficient tolerability at the efficacious dose in preclinical models. Citation Format: Charlotte Kopitz, Luisella Toschi, Carolyn Algire, Mélanie Héroult, Anna-Lena Frisk, Kirstin Meyer, Arndt Schmitz, Eleni Lagkadinou, Heike Petrul, Iring Heisler, Roland Neuhaus, Bernd Buchmann, Herbert Himmel, Marcus Bauser, Andrea Haegebarth, Karl Ziegelbauer. Pharmacological characterization of BAY-876, a novel highly selective inhibitor of glucose transporter (GLUT)-1 in vitro and in vivo. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4746.
Read full abstract