Graph Collaborative Filtering is a widely adopted approach for recommendation, which captures similar behavior features through Graph Neural Network (GNN). Recently, Contrastive Learning (CL) has been demonstrated as an effective method to enhance the performance of graph collaborative filtering. Typically, CL-based methods first perturb users’ history behavior data (e.g., drop clicked items), then construct a self-discriminating task for behavior representations under different random perturbations. However, for widely existing inactive users, random perturbation makes their sparse behavior information more incomplete, thereby harming the behavior feature extraction. To tackle the above issue, we design a novel directional perturbation-based CL method to improve the graph collaborative filtering performance. The idea is to perturb node representations through directionally enhancing behavior features. To do so, we propose a simple yet effective feedback mechanism, which fuses the representations of nodes based on behavior similarity. Then, to avoid irrelevant behavior preferences introduced by the feedback mechanism, we construct a behavior self-contrast task before and after feedback, to align the node representations between the final output and the first layer of GNN. Different from the widely adopted self-discriminating task, the behavior self-contrast task avoids complex message propagation on different perturbed graphs, which is more efficient than previous methods. Extensive experiments on three public datasets demonstrate that the proposed method has distinct advantages over other CL methods on recommendation accuracy.
Read full abstract