Abstract Let $(W,S)$ be a Coxeter system, and write $S=\{s_i:i\in I\}$ , where I is a finite index set. Fix a nonempty convex subset $\mathscr {L}$ of W. If W is of type A, then $\mathscr {L}$ is the set of linear extensions of a poset, and there are important Bender–Knuth involutions $\mathrm {BK}_i\colon \mathscr {L}\to \mathscr {L}$ indexed by elements of I. For arbitrary W and for each $i\in I$ , we introduce an operator $\tau _i\colon W\to W$ (depending on $\mathscr {L}$ ) that we call a noninvertible Bender–Knuth toggle; this operator restricts to an involution on $\mathscr {L}$ that coincides with $\mathrm {BK}_i$ in type A. Given a Coxeter element $c=s_{i_n}\cdots s_{i_1}$ , we consider the operator $\mathrm {Pro}_c=\tau _{i_n}\cdots \tau _{i_1}$ . We say W is futuristic if for every nonempty finite convex set $\mathscr {L}$ , every Coxeter element c and every $u\in W$ , there exists an integer $K\geq 0$ such that $\mathrm {Pro}_c^K(u)\in \mathscr {L}$ . We prove that finite Coxeter groups, right-angled Coxeter groups, rank-3 Coxeter groups, affine Coxeter groups of types $\widetilde A$ and $\widetilde C$ , and Coxeter groups whose Coxeter graphs are complete are all futuristic. When W is finite, we actually prove that if $s_{i_N}\cdots s_{i_1}$ is a reduced expression for the long element of W, then $\tau _{i_N}\cdots \tau _{i_1}(W)=\mathscr {L}$ ; this allows us to determine the smallest integer $\mathrm {M}(c)$ such that $\mathrm {Pro}_c^{{\mathrm {M}}(c)}(W)=\mathscr {L}$ for all $\mathscr {L}$ . We also exhibit infinitely many non-futuristic Coxeter groups, including all irreducible affine Coxeter groups that are not of type $\widetilde A$ , $\widetilde C$ , or $\widetilde G_2$ .
Read full abstract