Excessive phosphate loading leads to eutrophication problems in rivers or lakes and causes serious environmental and economic damages, urging new technologies to reduce effluent phosphate at ultra-low levels. As a promising candidate, adsorption over metal oxides is restricted by the released hydroxide anions (OH−) through ligand exchange, which elevates pH and suppresses further adsorption. In this contribution, we found ferrous ions (Fe2+) significantly enhance phosphate removal over hydrated ferric oxide (HFO) in a wide pH range via a cooperation of adsorption and precipitation, and clarified the synergistic mechanism by a series of characterizations and the modified models of adsorption isotherms and pseudo second-order kinetics. The combination of Fe2+and HFO removed up to 51.7 mg/g of phosphate at pH 4.0, with 43.6 and 8.1 mg/g attributing to adsorption and precipitation, respectively. In comparison to HFO alone, HFO/Fe2+ system achieved 2.2-fold increase in phosphate removal, 1.9-fold increase in phosphate adsorption capacity, and 3.4-fold increase in phosphate removal rate. The enhancement is understood by that hydroxide anions released from ligand exchange over HFO are neutralized by protons produced from the oxidative precipitation of ferrous ions. The HFO/Fe2+ combining system is promising to realize advanced removal of low concentration phosphate containing wastewater, and these findings bring new insights for the development of novel phosphate removal technologies through a rational design of a combination process.
Read full abstract