Solutions of oxygen in Fe–Co melts containing titanium are subjected to thermodynamic analysis. The first step is to determine the equilibrium reaction constants of titanium and oxygen, the activity coefficients at infinite dilution, and the interaction parameters in melts of different composition at 1873 K. With increase in cobalt content, the equilibrium reaction constants of titanium and oxygen decline from iron (logK(FeO · TiO2) =–7.194; logK(TiO2) =–6.125; logK(Ti3O5) =–16.793; logK(Ti2O3) =–10.224) to cobalt (logK(CoO · TiO2) =–8.580; logK(TiO5) =–7.625; logK(Ti3O5) =–20.073; logK(Ti2O3) =–12.005). The titanium concentrations at the equilibrium points between the oxide phases (Fe, Co)O · TiO2, TiO2, Ti3O5, and Ti2O3 are determined. The titanium content at the equilibrium point (Fe, Co)O · TiO2 ↔ TiO2 decreases from 1.0 × 10–4% Ti in iron to 1.9 × 10–6% Ti in cobalt. The titanium content at the equilibrium point TiO2↔Ti3O5 increases from 0.0011% Ti in iron to 0.0095% Ti in cobalt. The titanium content at the equilibrium point Ti3O5 ↔ Ti2O3 decreases from 0.181%Ti in iron to 1.570% Ti in cobalt. The solubility of oxygen in the given melts is calculated as a function of the cobalt and titanium content. The deoxidizing ability of titanium decline with increase in Co content to 20% and then rise at higher Co content. In iron and its alloys with 20% and 40% Co, the deoxidizing ability of titanium are practically the same. The solubility curves of oxygen in iron-cobalt melts containing titanium pass through a minimum, whose position shifts to lower Ti content with increase in the Co content. Further addition of titanium increases the oxygen content in the melt. With higher Co content in the melt, the oxygen content in the melt increases more sharply beyond the minimum, as further titanium is added.
Read full abstract