AbstractWe present an efficient mesh adaptation algorithm that can be successfully applied to numerical solutions of a wide range of 2D problems of physics and engineering described by partial differential equations. We are interested in the numerical solution of a general boundary value problem discretized on triangular grids. We formulate a necessary condition for properties of the triangulation on which the discretization error is below the prescribed tolerance and control this necessary condition by the interpolation error. For a sufficiently smooth function, we recall the strategy how to construct the mesh on which the interpolation error is below the prescribed tolerance. Solving the boundary value problem we apply this strategy to the smoothed approximate solution. The novelty of the method lies in the smoothing procedure that, followed by the anisotropic mesh adaptation (AMA) algorithm, leads to the significant improvement of numerical results. We apply AMA to the numerical solution of an elliptic equation where the exact solution is known and demonstrate practical aspects of the adaptation procedure: how to control the ratio between the longest and the shortest edge of the triangulation and how to control the transition of the coarsest part of the mesh to the finest one if the two length scales of all the triangles are clearly different. An example of the use of AMA for the physically relevant numerical simulation of a geometrically challenging industrial problem (inviscid transonic flow around NACA0012 profile) is presented. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004.
Read full abstract