Forest growing stock volume (GSV) is a fundamental indicator for assessing the status of forest resources. It reflects forest carbon storage levels and serves as a key metric for evaluating the carbon sequestration capacity of forest ecosystems, thereby playing a crucial role in supporting national “dual-carbon” objectives. Traditional allometric models typically estimate GSV using tree species, diameter at breast height (DBH), and canopy height. However, at larger spatial scales, these models often neglect stand density, resulting in substantial estimation errors in regions characterized by significant density variability. To enhance the accuracy of large-scale GSV estimation, this study incorporates high-resolution, spatially continuous forest structural parameters—including dominant tree species, stand density, canopy height, and DBH—extracted through the synergistic utilization of active (e.g., Sentinel-1 SAR, ICESat-2 photon data) and passive (e.g., Landsat-8 OLI, Sentinel-2 MSI) multi-source remote sensing data. Within an allometric modeling framework, stand density is introduced as an additional explanatory variable. Subsequently, GSV is modeled in a stratified manner according to tree species across distinct ecological zones within Kunming City. The results indicate that: (1) the total estimated GSV of Kunming City in 2020, based on remote sensing imagery and second-class forest inventory data collected in the same year, was 1.01 × 108 m3, which closely aligns with contemporaneous statistical records. The model yielded an R2 of 0.727, an RMSE of 537.566 m3, and a MAE of 239.767 m3, indicating a high level of overall accuracy when validated against official ground-based inventory plots organized by provincial and municipal forestry authorities; (2) the incorporation of the dynamic stand density parameter significantly improved model performance, which elevated R2 from 0.565 to 0.727 and significantly reduced RMSE. This result confirms that stand density is a critical explanatory factor; and (3) GSV exhibited pronounced spatial heterogeneity across both tree species and administrative regions, underscoring the spatial structural variability of forests within the study area.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
6299 Articles
Published in last 50 years
Articles published on Inventory Data
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
6105 Search results
Sort by Recency