Investigation of Lantana camara biomass for potential bioenergy generation integrates invasive species (IS) management with the unabated demand for bio-energy. In the present investigation, L. camara was used to produce bio-oil by thermochemical conversion (pyrolysis). The resultant product evinced energy yield of 62.58% with 64.95% of elemental carbon (C) content and endorsed the suitability of L. camara bio-oil for biofuel applications and value addition. Thermogravimetric (TG-DTG) analysis revealed a short thermal degradation profile, whereas spectroscopic analyses detected a host of organic compounds such as esters, phenols, ketones, aldehydes, aliphatics, and aromatics. The economic analysis of L. camara biomass conversion technology carried out in this study proved to be commercially competitive and viable versus petroleum refining. Antimicrobial and antioxidant assays with bio-oil evinced highest zone of inhibition (ZOI) against Candida albicans (31.02mm), and displayed strong antioxidant property (DPPH IC50 value 233.72 ± 0.2μg/ml). The bio-oil exhibited rheological characteristics of shear thinning and pseudoplastic fluid, particularly at low and intermediate shear rates. The present study highlights the multifaceted advantages of utilizing L. camara biomass, which include environmental remediation via waste management, bioenergy generation, and the feasibility of generating value-added products.
Read full abstract