Background: Virtual functional assessment index (vFAI), an alternative approach for assessing hemodynamic significance of stenosis has been shown to enhance the diagnostic performance of coronary computed tomography angiography (CCTA) based on evaluating the area under pressure drop-flow curve for a stenosis. Previously, this was assessed via computational fluid dynamics. We investigated the evaluation of vFAI from CCTA images using 3D printing and an in vitro flow loop and its efficacy as compared to the invasively measured fractional flow reserve (FFR). Methods and Results: Eighteen patients with varying degrees of coronary artery disease who underwent non-invasive CCTA scans and invasive FFR of their left anterior descending coronary artery (LAD) were included. The LAD artery was segmented and reconstructed using Mimics (Materialise inc.,). The segmented models were then 3D printed using Carbon 3D printer (Carbon Inc.,) with rigid resins. An in vitro flow circulation system representative of invasive measurements in a cardiac catheterization laboratory was developed to experimentally evaluate the hemodynamic parameters of pressure and flow (Fig A). For each model, a range of physiological flow rates was applied by a peristaltic steady flow pump and titrated by a flow sensor. The pressure drop and the pressure ratio (Pd/Pa) were assessed for patient-specific aortic pressure and differing flow rates. vFAI was evaluated as the normalized area under the P d /P a vs Q curve from 0 to 240 mL/min. There was a strong correlation between vFAI and FFR, (R = 0.83, p < 0.001; Fig B) and a very good agreement between the two parameters by Bland-Altman analysis. The mean difference of measurements from the two methods was 0.06 (SD = 0.08, p=0.0063; Fig C), indicating a small systematic overestimation of the FFR by vFAI. Conclusions: vFAI can be effectively derived from 3D CTCA datasets using 3D-printed in vitro models, based on evaluation over a range of hemodynamic conditions.
Read full abstract