Epidermal growth factor receptor exon 20 insertions (EGFR Ex20ins) driver mutations in non–small cell lung cancer (NSCLC) is insensitive to EGFR tyrosine kinase inhibitors (TKIs). Therefore, it is necessary to develop more novel strategy to address the limitations of existing therapies targeting EGFR-mutated NSCLC. Lupalbigenin (LB), a flavonoid compound extracted from Derris scandens, has shown preclinical activity in lung cancer. However, the activity of LB in Ex20ins-driven tumors has not yet been elucidated. In this study, a series of stable BaF/3 cell-line that contains a high proportion (>90 %) of EGFR-eGFP Ex20ins were generated using an IL3-deprivation method. Ba/F3 cell models harboring dissimilar Ex20ins were used to characterize the antineoplastic mechanism of LB. Molecular docking confirmed that the LB could effectively bind to key target EGFR. The in vitro anticancer activity of LB was investigated in engineered Ba/F3 cells bearing diverse uncommon EGFR mutations. LB was shown to be more potent in inhibiting the viability of various uncommon EGFR-mutated cell lines. Mechanistic studies disclosed that LB repressed EGFR phosphorylation and downstream survival pathways in Ba/F3 cells expressing EGFR Ex20ins, resulting in caspase activation by activating the intrinsic apoptotic pathway. Further analyses showed that LB significantly induced G0/G1 cell cycle arrest and apoptosis in cells. LB also reduced the protein expression levels of CDK4, CDK6, CDK8, cyclin D1, cyclin A2, and Bcl2 and promoted the expression of cytochrome C, p27, and p53. In summary, we explored the possible potential targets of LB through network pharmacology and verified the target using in vitro experiments. Furthermore, our results demonstrated that LB showed potential anti-Ex20ins cancer activity through suppression of the EGFR and ERK1/2 signaling pathway in Ba/F3 cells bearing two to three amino acid insertion mutations. These findings suggested that LB might be valuable for further investigation as a potential candidate in the treatment of associated diseases.
Read full abstract